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Abstract 

While CNNs excel in image classification, their performance deteriorates under noisy conditions. This 

paper introduces an enhanced CNN (ECN) designed to enhance noise resilience while maintaining high 

accuracy in image classification tasks. By replacing the ReLU activation function with K-winners and 

utilizing sparse weight initialization, the ECNK achieves superior performance even in the presence of up 

to 40% noise. The hybrid ECNK algorithm is also proposed, combining the strengths of CNN with k-nearest 

neighbors (KNN) to further increase classification accuracy. The model was tested on both the MNIST 

dataset and the ABIDE dataset for detecting Autism Spectrum Disorder (ASD) from brain MRI scans. 

Results demonstrate that the ECNK method achieves a classification accuracy of 99.8% for ASD detection, 

even under noisy conditions, significantly outperforming traditional CNN methods. 
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1. Introduction 

Convolutional Neural Networks (CNNs) have become a foundational component of modern deep learning, 

reshaping how complex visual data is analyzed and understood. Inspired by the structure and function of 

the human visual cortex, CNNs are specifically designed to process images in a hierarchical manner, 

capturing patterns from basic edges to complex shapes and textures [1]. This layered structure enables 

CNNs to automatically and efficiently recognize spatial hierarchies and intricate details within images, 

making them uniquely effective for applications requiring high-precision visual analysis. In recent years, 

CNNs have shown remarkable success in diverse fields, including medical diagnostics, environmental 

monitoring, agricultural disease detection, and autonomous driving. In neurological research, for example, 

CNNs have been used to analyze facial biomarkers to identify Autism Spectrum Disorder (ASD), 

showcasing their capacity to detect subtle patterns crucial for early diagnosis [2]. 

The architecture of CNNs includes several specialized layers, each with a distinct role in enhancing the 

model’s performance and flexibility. The convolutional layers form the core of CNNs, using filters or 

"kernels" to extract localized features from input images. These are followed by pooling layers, which 

reduce data dimensionality, thereby improving computational efficiency without losing essential 

information. This approach minimizes the risk of overfitting, making CNNs highly generalizable and 



 
 
suitable for large-scale applications such as real-time plant disease classification, where they have 

consistently outperformed traditional machine learning approaches [3]. 

A key advantage of CNNs is their ability to learn directly from raw data, eliminating the need for extensive 

manual feature extraction. Advances in CNN architectures, such as AlexNet, ResNet, and VGGNet, have 

further pushed the boundaries of image recognition by introducing deeper networks and more sophisticated 

methods of feature extraction. For instance, ResNet's introduction of residual blocks has addressed 

challenges such as the vanishing gradient problem, enabling the construction of deeper and more accurate 

models. These innovations have expanded CNN applications to areas like object detection and image 

segmentation, demonstrating their versatility beyond basic classification tasks [4]. 

Moreover, the power of CNNs has been greatly amplified by the use of advanced hardware, particularly 

Graphics Processing Units (GPUs), which allow for faster training and real-time analysis. This has led to 

breakthroughs in critical applications like autonomous driving, where accurate, immediate visual 

interpretation is essential. In agriculture, CNNs are effectively used for pest and disease detection, assisting 

in precision agriculture practices and contributing to global food security through early stress detection in 

crops [5]. 

Despite their broad applicability, CNNs present certain challenges. They typically require large labeled 

datasets for effective training, and their complex architectures demand substantial computational resources. 

However, recent advancements in transfer learning and data augmentation have made it feasible to use pre-

trained models and synthetic data, expanding CNN applicability even in data-limited domains like medical 

imaging. 

While CNNs are powerful for various classification tasks, they are particularly vulnerable to noisy data, 

which can significantly disrupt pattern recognition and reduce classification accuracy. This sensitivity arises 

because CNNs rely on identifying specific features, which noise can obscure, making the models less 

effective in high-noise environments. Consequently, standard CNN architectures often struggle to maintain 

reliable performance when input data contains substantial noise. 

To address these limitations, this article proposes enhancements to the CNN algorithm, aiming to improve 

its robustness against noise. Our goal is to adapt CNNs to classify data accurately even in the presence of 

very high noise levels. For this purpose, we introduce a hybrid algorithm, ECNK, combining an Enhanced 

Convolutional Neural Network (ECN) with the K-Nearest Neighbors (KNN) approach. This hybrid model 

leverages CNN's feature extraction capabilities along with KNN's effectiveness in handling noisy data. The 

specific methodology and enhancements are explained in the "Proposed Method" section, demonstrating 

how this approach seeks to enhance overall classification accuracy and stability under noisy conditions . 

2. Preliminaries 

The purpose of this section is to explain some of the scientific terms used in the rest of the paper, including 

the k-nearest neighbors algorithm (KNN) and Autism Spectrum Disorder (ASD). 

2.1. Introduction to k-nearest neighbors algorithm (KNN) 

The k-Nearest Neighbors (KNN) algorithm is a widely-used, non-parametric method in machine learning, 

valued for its simplicity and effectiveness in both classification and regression tasks [6]. KNN classifies a 

new data point by identifying the "k" nearest neighbors within a predefined feature space, determining the 



 
 
label based on the majority class of these neighbors, or averaging values for regression purposes. The 

algorithm relies on various distance metrics, such as Euclidean or Manhattan distance, to measure 

similarity, which makes it adaptable across numerous applications, including vibration-based monitoring 

in agriculture and optimization in industrial processes.  

A significant advantage of KNN is its straightforward, assumption-free design, which does not require prior 

knowledge of data distribution. However, its performance can vary based on the choice of "k" and distance 

metric, impacting both accuracy and computational efficiency [7]. Nonetheless, KNN has shown strong 

performance in situations where there is ample labeled data and manageable dimensionality. Recent studies 

have enhanced KNN by integrating it with optimization techniques like Harmony Search, aimed at reducing 

computational costs and improving real-time performance, especially in predictive maintenance and 

monitoring systems. This flexibility has broadened KNN's application range from environmental 

engineering to fault detection, solidifying its role as a valuable tool in data-driven decision-making. 

2.2. Introduction to Autism Spectrum Disorder (ASD)  

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by persistent 

challenges in social interaction, communication, and repetitive behaviors. Diagnosing ASD is challenging 

due to its broad range of symptoms and the overlap with other neurological conditions [8]. Traditionally, 

ASD diagnosis has relied on observational assessments, such as the Autism Diagnostic Observation 

Schedule (ADOS) and the Modified Checklist for Autism in Toddlers (M-CHAT). While these tools 

provide valuable insights, they are time-consuming and prone to variability in interpretation, which can 

affect diagnostic consistency [9]. 

To enhance diagnostic accuracy and efficiency, recent research has increasingly focused on artificial 

intelligence, particularly deep learning methods [10, 11]. Convolutional Neural Networks (CNNs) have 

proven especially effective in extracting complex patterns from medical images, making them well-suited 

for identifying subtle ASD-related features. In particular, CNNs have been applied to facial feature analysis, 

detecting nuanced expressions and structural cues linked to ASD with remarkable accuracy. Advanced 

hybrid methods that combine CNNs with machine learning models, such as Random Forests and XGBoost, 

further improve classification by leveraging CNNs' ability to extract detailed features and enhancing 

predictive power through ensemble techniques [12]. 

Beyond facial analysis, CNN-based models have also shown promise in analyzing EEG data for ASD 

detection, particularly when integrated with Long Short-Term Memory (LSTM) networks [13]. These 

combined CNN-LSTM models capture both spatial and temporal information, allowing for the 

identification of unique brain connectivity patterns associated with ASD. Studies using these models have 

demonstrated that individuals with ASD exhibit distinct functional connectivity, offering new possibilities 

for diagnostic approaches that extend beyond behavioral observations [14]. 

By advancing diagnostic methods with deep learning, researchers aim to develop faster, more consistent, 

and objective tools for ASD diagnosis. This shift not only supports earlier and more reliable intervention 

but also enhances our understanding of ASD’s neurobiological basis, paving the way for more tailored 

therapeutic options. 

3. The proposed method 



 
 
The proposed method is depicted schematically in Figure 1. On the left is the standard convolutional neural 

network (CNN), while the enhanced model, referred to here as ECNK, appears on the right. In the baseline 

CNN, h  represents the number of layers, y denotes the output, w is the weight vector, and U  represents the 

bias term. The activation function utilized is ReLU, as described in [7]. 

Our method introduces several key modifications to transform the CNN into a sparse neural network, 

aiming for improved efficiency and noise resistance. To enhance model robustness, the ECNK method 

incorporates two key modifications: replacing the ReLU activation function with a 'K-winners' activation 

and employing sparse weight initialization. These adjustments are designed to make the network more 

resistant to noise by prioritizing critical activations and reducing unnecessary parameters. Further analysis 

on optimal kkk values and sparsity levels could clarify their impact on noise resilience and classification 

performance. The first modification replaces the ReLU activation function with a K-winners function. This 

non-linear function retains only the  k  highest active units in each layer (represented by  yl), while setting 

the rest to zero. The second modification involves initializing the network weights with a sparse random 

distribution, where most weights are zero and only a small fraction have non-zero values.  

The K-winners activation retains only the kkk highest activations in each layer, effectively filtering out less 

relevant neurons and focusing on the most salient features. This approach not only enhances noise resilience 

but also reduces computational load by minimizing the number of active neurons. Optimal selection of the 

parameter kkk is critical for performance, as too high or too low a value may lead to either loss of key 

information or insufficient pruning of irrelevant features. Introducing a brief experiment or ablation study 

to analyze different kkk values could help clarify this parameter’s impact on accuracy under varying noise 

conditions. 

Sparse weight initialization further contributes to the network's noise resistance by reducing overfitting and 

improving generalization. By initializing weights so that only a fraction of them are active, the model learns 

to rely on a smaller, more meaningful subset of weights. This technique encourages the network to capture 

only essential patterns, which is particularly beneficial for image classification tasks in noisy environments. 

Detailing the specific sparsity ratio and its selection criteria, or presenting a small study on different ratios, 

could offer valuable insights into the trade-offs involved. Finally, the input data in this approach is a 

strategically chosen subset of the original input set, further enhancing the network's efficiency. 

 
Figure 1- (left) Standard Convolutional Neural Network, (right) Enhanced Convolutional Neural Network (ECN)  

We evaluated the effectiveness of this method using the MNIST dataset [8], which comprises 70,000 

labeled handwritten digit images (60,000 for training and 10,000 for testing). As illustrated in Figure 2- 



 
 
left, we added incremental noise levels of 10%, 20%, up to 50% to selected MNIST images to test the 

method's robustness. These noisy images were processed separately through both the conventional CNN 

and our ECNK.  

         

Figure 2-(left) Noisy MNIST images, (right) The comparison results show that the proposed method consistently achieves 

higher accuracy than the standard CNN, particularly as noise levels increase. 

Figure 2 -right displays the classification results, showing that while both methods achieve comparable 

accuracy with noise-free data, ECNK consistently outperforms the standard CNN as noise levels increase 

beyond 10%. This outcome highlights the enhanced noise tolerance of the proposed ECNK approach 

compared to the conventional CNN. 

Our next recommendation introduces a hybrid algorithm that combines the enhanced CNN (ECN) with 

KNN. In this approach, the output from the ECNK is used as input to the KNN classifier. For 

experimentation, we utilized 3D MRI brain scans (256x256x180) from the Autism Brain Imaging Data 

Exchange (ABIDE) dataset (ABIDE.loni.usc.edu), focusing on identifying Autism Spectrum Disorder 

(ASD), which manifests in early childhood and benefits significantly from timely diagnosis. Distinguishing 

ASD from Normal Control (NC) subjects is crucial for enabling early intervention, and numerous studies 

have explored various methods for ASD diagnosis a classification technique using the enhanced CNN 

model. Initially, we transformed each 3D brain scan into 180, 2D images using coronal slices, which were 

then grouped into distinct sets. Each image group was then fed into the proposed ECNK method, followed 

by fully connected (FC1 and FC2) layers. The KNN classifier then processed the resulting feature vectors, 

enhancing classification accuracy. To validate the KNN’s effectiveness in this framework, we repeated the 

process using a softmax classifier instead. Results showed that the ECNK combination achieved a 99.8% 

classification accuracy, outperforming the ECNK + softmax, which yielded 96%. 

We then introduced noise across all 3D images in the ABIDE dataset to evaluate the robustness of both 

methods under noisy conditions. As expected, the ECNK approach maintained high accuracy in noisy 

scenarios. In image processing, color images are generated by combining three channels: red, green, and 

blue. Similarly, we created a detpresentation of the brain by combining images from coronal, sagittal, and 

axial views, capturing extensive detail for accurate ASD classification. This approach provides a novel way 

to enhance image clarity and classification precision. After creating 3D brain images from each view, we 

processed these images with the proposed method for each orientation. The outputs from coronal, sagittal, 

and axial views were then weighted by factors w1, w2, and w3 respectively, before final classification using 

KNN. The algorithm’s steps are summarized in Figure 3, and this comprehensive method achieved an 

accuracy of 99.8% 



 
 

 

Figure 3- Distinguishing between Autism Spectrum Disorder (ASD) and Neurotypical Controls (NC) using 3D MRI 

brain imaging 

Tables 1 to 4 present a comparison of the proposed method and the standard CNN across different noise 

levels, evaluated using various metrics such as Accuracy, Precision, and Sensitivity. The tables address 

noise levels of 2%, 20%, 30%, and 40%. The results demonstrate that the proposed method remains 

effective even at a noise level of 40%, while the standard CNN significantly loses its performance. 

Table 1- Compare the proposed method with the standard CNN using various metrics at a noise level of 2%.           
Method Accuracy Precision Sensitivity 

Proposed method 99.80% 87.69% 96.2% 

Standard CNN 97.00% 85.58% 94.1% 

 

Table 2- Compare the proposed method with the standard CNN using various metrics at a noise level of 20%.           
Method Accuracy Precision Sensitivity 

Proposed method 99.77% 87.64% 96.1% 

Standard CNN 87.00% 80.32% 84.33% 

 

Table 3- Compare the proposed method with the standard CNN using various metrics at a noise level of 30%.           
Method Accuracy Precision Sensitivity 

Proposed method 93.37% 82.69% 91.44% 

Standard CNN 75.20% 70.12% 72.09% 

 

Table 4- Compare the proposed method with the standard CNN using various metrics at a noise level of 40%.           
Method Accuracy Precision Sensitivity 

Proposed method 90.9% 80.98% 89.90% 

Standard CNN 58.70% 50.34% 55.87% 



 
 

4. Conclusion 

In this study, we introduced an enhanced convolutional neural network (ECNK) designed to improve noise 

resilience in image classification tasks. By incorporating the K-winners activation function and sparse 

weight initialization, the ECNK demonstrated superior accuracy and stability in high-noise environments 

compared to traditional CNN architectures. Additionally, by integrating the ECNK model with the k-nearest 

neighbors (KNN) algorithm, our approach achieved higher classification accuracy, particularly in detecting 

Autism Spectrum Disorder (ASD) from noisy MRI images.  Experimental results on the MNIST and ABIDE 

datasets confirmed that our proposed method not only outperforms conventional CNNs in both noise-free 

and noisy conditions but also retains high accuracy at noise levels of up to 40%. These findings underscore 

the potential of the ECNK framework as a robust solution for real-world applications where noise is often 

unavoidable, such as in medical imaging and autonomous systems. Future work could explore optimizing 

the K-winners parameter and sparsity ratio further, as well as expanding this approach to other types of 

noisy data and classification challenges.  By advancing the resilience and adaptability of CNN-based 

models, this study opens new avenues for research and application in noise-sensitive environments. The 

ECNK model represents a significant step toward more accurate and reliable deep learning solutions for 

critical domains where data quality can greatly impact decision-making. 
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