
 

1 

 

 
BMLDD: Breast mass lesion detection by using Deep Learning 

 
 

Saeed Saffar Ardabili 
PHD candidate of Tabriz University 

 

Nasim Zolfaghari 

PHD candidate of Sahand University of Technology 
 

Afshin Ebrahimi 
Sahand University of Technology Professor of Electrical Engineering, 

 

Abstract 
Early detection of breast cancer can increase treatment efficiency and therefore decline the high rate of moralities in 

patients with breast cancers. Computer-aided detection systems can help radiologists to detect breast mass lesions in 

a faster and more efficient way. This study proposed BMLDD, a new pipeline for breast mass lesion detection by a 

deep learning method using mam-mographic images. The proposed method uses histogram stretching, 

morphological operations, color-map, and a CNN with VGG16 architecture as its fundamental steps. This pipeline 

can efficiently improve the image condition, remove artifacts, extract breast region from the back-ground, highlight 

the differences in images, extracting useful features, and finally detect the breast masses. The performance 

evaluation on INbreast mammographic images has shown that BMLDD can yield promising results with 96% 

Sensitivity, 96% Precision, 96% F1-score, 96% Accuracy and 99% AUC. Moreover, the comparisons verified that 

BMLDD performed better than other state-of-the-art methods. Consequently, BMLDD is an efficient method for 

breast mass lesion detection. 
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1. Introduction 

Breast cancer is one of the fatal diseases in women, which has led to 626,700 deaths in 2018 [43]. About one-fourth 
of the cases with cancer have breast cancer [43]. The rate of mortality of breast cancer in developing countries is 
higher than the other countries [18]. A high number of cases with breast cancer imposes an enormous economic 
burden on societies [7, 27]. Early detection of breast cancer can significantly impact declining mortality, ineffective 
treatments, and imposed costs [42, 7, 22] . On the other hand, if the breast cancer is not cured in the early stage, the 
chance of treatment will aggravate due to the invasive metastasis of cancer to other organs [22]. Two strategies have 
been suggested by the World Health Organization (WHO) for cancer early detection: Distinguishing cancer in early 
stages, and consistent screening of the healthy populations [49]. Detecting breast cancer by specialist may result in 
high false-positive [46] and false-negative [31, 15]. the false diagnosis imposes the necessity of conducting further 
examinations [9]. Numerous computer-aided detection (CAD) methods have been proposed to decline the false 
detection rate. Mainly, CAD methods are attempting to pinpoint mass lesions in the mammographic images using 
image processing techniques. The ultimate purpose of CAD methods is to boost the accuracy of breast cancer 
diagnosis [21]. The proposed methods have used various machine learning classifiers such as simple logistic 
classifier [25, 19], k-nearest neighbor (KNN) [50, 47], decision tree [45], support vector machine (SVM) [19, 17, 
41, 44], and artificial neural network (ANN) [33, 6, 32, 34, 35] to detect breast cancer lesions. 
   The advent of deep learning has revolutionized the machine learning field. Currently, the literature is replete with 
abundant deep learning methods that endeavor to address various biological issues [38, 52, 20, 12, 48]. The efficient 
application of deep learning has been indicated in many previous works. Maicas et al. have used deep reinforcement 
learning in order to detect breast lesions in dynamic contrast-enhanced magnetic resonance images (DCE-MRI) 
[28]. They modified the deep Q-network approach and utilized it for search policy. Their proposed method showed 
high speed as well as decent accuracy. De et al. have exploited a deep neural network with U-net architecture [29]. 
Their proposed method can both classify and segment the lesions in mammographic images. Three recent works, 
including the methods proposed by Ribli et al. [37], Reiazi et al. [36], and Cao et al. [10] have used Faster-RCNN 
network which is a regional convolutional neural network in the context of detecting breast lesions. Not only can 
these methods detect breast lesions, but also they can classify the lesions into malignant and benign classes. Al-
Antari et al. have proposed a method for detection and classification on breast lesions from mammographic images 
[2]. They used YOLO classifier and boosted its performance by Inception ResNet-V2 classifier. 
   The previously proposed methods succeeded in obtaining promising results. However, they have high false-
positive rates for proposing pretends methods with decent performance, which is still challenging and demanding. In 
this paper, we introduce BMLDD, a method for breast mass lesion detection using deep learning. BMLDD has 
several steps, including preprocessing, morphological operations, color-map, and deep neural network. This pipeline 
is a novel procedure in detecting mass lesions of the breast. We have implemented various types of deep neural 
networks, and the results showed that VGG16 is the best architecture. The performance comparisons with other 
state-of-the-art methods indicated that BMLDD could efficiently detect breast mass lesions. 
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Figure 1: An overview of BMLDD steps. It takes mammographic images as the input. In the preprocessing step, it 

applies histogram stretching on the images and resizes them to smaller sizes. It then performs morphological 

operations to eliminate the noises and applies a threshold on it to specify the breast region. In the next step, the 

images are break down into small patches. After applying the colormap for intensifying important parts, a CNN with 

VGG16 architecture is applied on the images to classify them. 
2. Materials and methods 

2.1.  Data 
   Mammographic images were obtained from INbreast database [30]. This database contains comprehensive cases 
from women and men with several types of lesions such as mass, calcification, asymmetric, and distortions. We 
assigned the images containing mass lesions as positive images (labeled "1") and the images without mass lesions as 
negative images (labeled "0"). The resulting dataset comprises 410 images that were split to 60%, 20%, and 20% for 
training, validation, and test sets. An overview of BMLDD steps is shown in Figure 1. These steps are described 
meticulously in the following subsections. 

2.2. Pre-processing 

   Most image processing methods, apply some preprocessing steps on the images to enhance the image condition, 
remove noise from the image, and improve the performance of further processes. We use the histogram stretching 
[4] for contrast equalization besides a applying morphological operations [13]. 

2.2.1. Histogram stretching 
   We applied histogram stretching in order to improve the image conditions and have more robust results. This 
procedure converts the image intensities to [0, 255] interval using Eq (1). 
 

 
 

 
(1) 

 

   Where  is the intensity of the 푖th pixel in the image. Processing large images impose much time and memory 

overload for the executions and may lead to occur overfitting. The converted images were resized by nearest-
neighbor interpo-lation [16] to avoid this situation. This method resizes the images by a resize coefficient. In this 
study, we considered the resize coefficient as 1/12, which means that each image’s size shrinks to the 1/12 of its 
original size. 

2.3. Morphological operations 

    Morphological operations perform non-linear filters on the image, which helps eliminate noises, focus on the 
breasts regions, and disregard worthless parts of the image. Before applying the morphological operations, we 
extended the images with zero paddings. This procedure enables us to apply morphological operations on all pixels, 
even the edge pixels. On the other hand, this may not result in false detection since the probability of mass lesions in 
the edge pixels is insignificant. 
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Conventionally, morphological operations are done on binary images; however, they can be modified for gray-scale 

images. Suppose  be a binary image and  a morphological filter. We defined the set of positive pixels by 

.Assume that  is the central pixel of morphological filter. Two basic morphological 

operations are dilution (D) and erosion (E), which are defined as follows: 
  
D(B , M) = U(i,j)єβ d(i,j)                                                                             
 

(2) 

d (i ,j) = {(i+h,j+g)|(B(i+h,j+g)+M(i’+h, j´₊g)≥1;hє{ ¸···¸ }¸gє{ ¸···¸ }} 
(3) 

E(B,M) = U(i,j) єβ e(i,j)  
 

(4) 

E (i ,j)|iƒ Ɐ h є{ ¸···¸ }, g є{ ¸···¸ } d(i ,j)                                            
(5) 

 
and are positive pixels after applying dilation and erosion operations, respectively. In dilution 

and erosion, the morphological filter slides over the  image. Dilation operation aims to fill in the missed pixels 

according to the morphological filter. When the central pixel of the filter is placed under positive pixel of , the 

negative surrounding pixels of  will change to positive, if the corresponding pixel in the  is positive. Therefore, 

dilution operation can increase the number of positive pixels. 
   On the contrary, erosion operation conserves solely the positive pixels that accord completely to their 
morphological filter; i.e., when the filter is placed on them, all positive pixels results by dilution operation positive 
were positive in . 

   The dilation and erosion operations can be extended for gray-scale images. Let  be a gray-scale image with 

integer intensities in [0, 255] and  be the binary morphological structure filter. Define 

 as the positive pixels in morphological filter. The dilution and erosion are calculated 

as the following. 
  
D(B,m)(i,j)  =max(p,q)ЄM  {B(i –p, j- q)}                                                      (6) 
E(B,m)(i,j) = min(p,q)Єm     {B(i –p, j- q)}                                                      
 

(7) 

Various combinations of dilution and erosion can define numerous morphological operations. Two practical 
operations are opening ( ) and top white hat ( ) operations, which are calculated as follows. 

 
O(B,m) = D(E(B,m),m)                                                                              (8) 
W(B,m)=B–O(B,m)                                                                            
    

(9) 

 
   The intuition of opening operation eliminates the small positive regions, whereas the top white hat removes the 
artifacts by eliminating all pixels that are remained from the opening operation. We applied the top white hat 

operation to cross-out artifacts. The considered morphological filter in this study was a Disc filter with 240r pixels 

where r = 1/12 denotes the resize coefficient. 

2.4. Mask construction 
   Since the lesions are located chiefly in the breasts region, we specify the breast region and disregarded other 
regions. To this aim, a thresholding technique was applied to the resulted images. Specifically, each pixel was 
compared to a threshold and was set to zero if its intensity was lower than the threshold and set to 1, otherwise. The 
bulkiest object on this mask was chosen as the breast region. In this way, we could extract the breast region from the 
surrounding black portions. The threshold value was set to 10 in his study. After conducting the thresholding 
technique, a dilation operation was applied to the images to refine the resulted mask. 

2.5. Patch extraction 

   Due to the computational burden of processing the full images, each sample image was segmented to smaller 
pieces called "patch." The extraction of negative and positive patches in training and validation images was done 
according to the following rules: 
 
• Negative: The patches that were located completely in the breast region and contained no mass lesion. To do this, 
we grid sampled the breast region to patches of size 76 × 76, where every two adjacent patches had overlap. 
 
 • Positive: The patches that contain the center of the mass lesion. To extract them, we considered nine different 
patches: the first is a 76 × 76 patch that its central pixel is the center of the mass lesion. By moving this patch 
according to the following directions, we extracted eight more positives patches. 
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1. Five pixels to the right  
2. Five pixels to left  
3. Five pixels up  
4. Five pixels down  
5. Five pixels to the right and five pixels up  
6. Five pixels to the right and five pixels down  
7. Five pixels to left and five pixels up  
8. Five pixels to left and five pixels down 
   For images in the test set, the patch extraction was done similar to the way that was used to extract negative 
patches in training and validation images, because we did not have any ground truth for the test images. This 
procedure has led to extracting 15684, 5313, and 5071 patches for training, validation, and test set. 

2.6. Color-Map 

   We applied color-map [3] on each patch to intensify the most important parts. This procedure maps the gray-scale 
image to a colorful one. Each color is assigned to a number in [0, 255] interval. The color-map uses this assignment 
to color each gray pixel. The results are colorful patches with enhanced visualizations, which illustrated the 
important regions better. Each colorful patch has 76 × 76 × 3 size. The experiments have shown that applying color-
map on the patches results in higher retrieval rates of breast mass lesions. 

2.7. Convolutional neural network 
The colorful patches were used to train VGG16 neural network [40]. This network classifies the patches into two 
classes: the ones containing mass lesions labeled by "1", and the ones will without mass labeled by "0". The 
architecture of VGG16 is represented in Table 1. This architecture comprises 13 convolutional, five max pooling, 
and three dense layers. All convolutional layers convoluted the images by 3 × 3 filters and then applied the rectified 
linear unit (ReLU) activation function [5] on them. The fundamental role of convolutional layers is to process the 
patches and extract their efficient features. Moreover, some pooling layers are embedded in this network to down-
sample the resulted features and avoid the computational burden. Dense layers are fully connected to their previous 
layers and are responsible for further processing on the patches and finally classifying them accurately. The 
activation function of neurons in the last layer is the softmax function [23], which predicts the probability of 
belonging the patches to each class. 
   This network has 39,896,898 trainable parameters learned on the training samples with a batch size of 128, and the 
epoch number equals 9. The stochastic gradient descent (SGD) [8] with a learning rate of 0.01, the momentum of 
0.9, and weight decay equals 0.0005 to learn the model parameters. 
   It is worth mentioning that all hyper-parameters was finely-tuned and set to the numbers that yielded the best 
results. The implementations was done by Python 3.0 and Keras library on a system with 8G RAM and Intel Corei5 
CPU. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: The architecture of VGG16. Conv2D, MaxPooling2D, Dense represent the convolutional, max 

pooling, and fully connected layers. 
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3. Results 

3.1. Evaluation metrics 
   When the model was learned on the training set, its performance was evaluated using the following criteria that 
have been widely used in the classification problems. 

Sensitivity =  

(10) 

 Precision =  

 

(11) 

  F1 - score =                                                

(12) 

Accuracy =                                                                      

(13) 

FPR =      
(14) 

     
where   denote true positive, false positive, true negative, and false negative, respectively. The 

values of these criteria depend on the threshold value applied on the predicted probabilities. The CNN used at the 

final stage of method, yielded the probability of lesion presence in each image. The probability was converted to a 

binary label by comparing to a threshold. In addition to the foregoing criteria,  is computed as another criterion 

for assessing the model performance which is invariant to the threshold value.  is the area under the  

ROC curve which plots sensivity versus FPR for all thresholds. All of these criteria lies within the [0, 1] interval, 
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and each of them have different point of view in evaluating the model performance. Moreover, the binary cross 

entropy (BCE) of the predicted probabilities is also computed as Formula 15. 

BCE= -  . Log ti   + (1 - yi) log (1 - ti)                                                
(15) 

 

where  is the true label of the  th patch and is the predicted probability of method for the  th patch. 

3.2. Performance of BMLDD 

To find out the best number of training epoch, we executed BMLDD on multiple epochs and evaluated the BCE on 

the training and validation set in each epoch. Figure 2 illustrated the trend of BCE alterations during the training 

epochs. Both of BCE curves has declining trends, while training BCE declines steeply. After 9 epochs the training 

error approaches to zero and the validation error is plausible. The ROC curve of BMLDD on test data is shown in 

Figure 3 It shows that BMLDD performed efficiently on test data and obtained high AUC. Moreover, we performed 

BMLDD not only with VGG16 as the architecture of CNN in the last step, but also with some other CNN 
architectures. Three other CNN architecture including ALEXNET [39], ZFNET [51], and LENET [26] was 
considered for the last step of BMLDD. The results of BMLDD with various CNN architectures are presented in 
Table 2. The high values of all classification criteria as well as low BCE for all architectures verifies that BMLDD is 
an efficient and robust method that is not hugely dependent to the CNN architecture; nevertheless, the best results 
were achieved with VGG16 architecture. The sensitivity,precision, F1-score and Accuracy remained unchanged in 
these five models. However, VGG16 succeeded to obtain higher AUC and lower BCE. 

 
Figure 2: The changes in BCE values on training and validation set during the different epochs. 
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Figure 3: ROC curve of BMLDD. 
 

3.3. Comparison with other methods 

 

To further assess BMLDD performance, we compared its results with multiple state-of-the-art methods. Table 3 
represents the method outline and performance of other methods on INbreast database. The evaluated criteria 
substantiated that BMLDD outperformed other methods. Therefore, BMLDD can be used in the accurate detection 
of breast masses. 
 

 
 

Table 2: The performance of BMLDD with various CNN architectures. 

 

CNN 
architecture 

Sensitivity Precision F1-score Accuracy AUC BCE 

VGG16 0.96 0.96 0.96 0.96 0.99 0.12 

ALEXNET 0.96 0.96 0.96 0.96 0.96 0.63 

ZFNET 0.96 0.96 0.96 0.96 0.97 0.31 

LENET 0.96 0.96 0.96 0.96 0.99 0.14 

 

Table 3: The performance of state-of-the-art methods on INbreast database. 
 

Reference Method Accuracy 

BMLDD Histogram stretching, morphological operations, colormap, and VGG16 0.96 

Carneiro et al. [11] Deep learning with CNN-F, Random forest classifers, and Boosting 
classifers 

0.90 

Dhungel et al. [14] ROI extraction with DBN and GMM, RCNN, and Random forest 0.90 

Kozegar et al. [24] Adaptive threshold with other machine learning approaches 0.87 

 

 

 
 

 
4. Conclusion 
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   Breast cancer is one of the four leading cancers in the world. The high rate of breast cancer cases in women has 
led to a huge economic burden and high mortality in women. Since early detection of breast cancer helps 
significantly decrease fatalities and prosper the treatments, early detection of breast cancer is highly important. 
Computational methods that detect breast lesions can aid in the early detection of breast cancers and thereby 
increase patients’ chance of survival. 
   This study presented a novel pipeline, called BMLDD, for breast mass lesion detection using deep learning in 
mam-mographic images. The proposed method uses histogram stretching and morphological operations as the 
preprocessing steps to improve the image conditions, remove artifacts, determine the breast region, and exclude the 
background portion of images. Then we divided the images into small patches to avoid the computational burden. 
The patches were colored using a color-map process to better illustrate the differences and nuances in the images. 
The executions have shown that using color-map increases the number of retrieved lesions. The modified patches 
were used to learn a CNN with VGG16 architecture. This network was responsible for both the feature extraction 
and mass lesion detection in patches. 
 

   The performance evaluations on INbreast database have shown that BMLDD achieved very accurate results. More 
over, by changing the final CNN architecture, we investigated the best architecture for CNN and verified that 
VGG16 have led to the results with less error. It has 96% Sensitivity, 96% Precision, 96% F1-score, 96% Accuracy, 
99% AUC, and 0.12 binary cross-entropy. Furthermore, the comparison of BMLDD with several state-of-the-art 
methods verified that BMLDD outperformed other methods. Therefore, BMLDD can be efficiently used for 
detecting breast lesions in mammographic images. 
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