

1

Machine learning for improving computer architecture like memory management

techniques

First Author Mahboubehsadat Mahdavi
Affiliation : Unaffiliated

Abstract

In this work, we propose an ML-empowered memory management framework focused on improving performance

in computer architecture by applying predictive, adaptive, and preemptive memory optimization techniques. By

integrating supervised learning to predict memory access, reinforcement learning for adaptive cache management,

and unsupervised learning for prefetching, the framework will be able to conduct dynamic management of memory

resources with significant latency reduction, improved cache hit rates, and better energy efficiency. Indeed, tested on

a wide array of workloads comprising machine learning inference, database operations, and scientific computing,

the framework demonstrated substantive gains in performance, hence showing its adaptability to high-demand

environments. Our results show that the framework can indeed perform runtime intelligent optimization of memory

management. Thus, the ground is paved for testing on most contemporary computing systems with high demands of

data and computations.

Keywords: machine learning, memory management, cache optimization, hybrid memory, computer architecture

2

Introduction
While computer architectures develop to deal with increasingly complex applications and vast datasets, traditional
memory management is facing severe challenges in performance, energy efficiency, and scalability. These are
gradually becoming limiting bottlenecks in systems featuring large-scale computations and real-time applications.
Machine learning has recently appeared as a very promising technology in the quest for optimized memory
management within computer architectures. Such bottlenecks and challenges include, but are not limited to, cache
management, memory allocation, and prefetching. ML can model complex patterns while dynamically adapting to
change its workloads. Recent advances in ML-based memory management have shown noticeable improvements
not only in execution efficiency but also in energy consumption. For that reason, ML is becoming an integral
building block of next-generation computer systems [1].
The traditional memory management strategy in computer systems is typically based on predefined rules and static
algorithms. It cannot adapt dynamically to the fluctuations in workload. Such techniques as LRU or FIFO caching,
though fundamental, do not take into consideration the demands of particular workloads or real-time shifts in data
access patterns. These rigid strategies hence lead to inefficient memory utilization, particularly under diverse and
unpredictable workloads. In contrast, machine learning allows the use of predictive and adaptive approaches to
memory management by using prior data to predict future memory access patterns. Such predictive models can
perform memory allocation and cache hierarchy optimization much more proficiently than the conventional
methods, hence enabling the reduction of latency and energy consumption by as high as an order of magnitude in
memory-bound applications. As such, hybrid systems combine volatile and non-volatile memory and bring unique
management challenges because of significant differences in access speed and/or endurance limitations between
memory types. By means of ML-driven resource management, these can be set for optimal speed-capacity mixes,
high system-level memory efficiency, and low wear of their non-volatile components. For example, data placement
can be changed dynamically with the aid of ML algorithms based on the usage pattern. The more it has been used,
the better the place it takes in fast memory, while the not-so-used data should take its place in slower but more
capacious memory. This not only improves performance but also increases the life span of memory components and
makes it excellent for applications needing speed along with endurance [2].
Another innovative use of machine learning in memory management is through Processing-In-Memory systems.
Traditional architectures are bounded by the "memory wall" in which moving data around between the memory and
the CPU represents a leading cause of bottlenecking, resulting in reduced speed and higher power consumption. The
PIM system, where the units of processing are embedded inside the memory, mitigates this issue by allowing
computations deep inside the memory cells. When integrated with machine learning, PIM architectures can take this
efficiency to the next level by learning how best to optimize data pathways and avoid useless data movement. For
example, experiments show that ML-enhanced PIM systems outperform traditional CPU and GPU implementations
that can give memory-bound ML workloads a massive boost in throughput while saving energy. Such architectures
are finding applications in domains that require high throughput with low latency, such as real-time data analytics
and artificial intelligence [3].
Apart from PIM, in-memory computing architectures are also empowered through machine learning applications.
Whereas PIM was only able to embed processing capabilities within memories, IMC focuses on the design of such
architectures that would leverage the inherently computing-capable nature of memory cells themselves. This shift in
paradigm enabled breakthroughs in handling large-scale neural network computations directly within memory,
reducing latency substantially while increasing energy efficiency. Optimized IMC systems leverage ML from
operation data to dynamically adjust memory resources for tasks. This is particularly crucial since many tasks
involving deep neural networks are very memory-intensive. Recent work has demonstrated that IMC, backed by
ML, is much more capable of performing such complex tasks as image recognition or natural language processing
and thus acts as a promising substitute for conventional architectures based on the von Neumann principle [2].
Beyond that, of course, is machine learning, whose predictive powers have been put to good use in real-time
memory access prediction. These ML models can, by anticipating which accesses to memory are likely to occur in
the future, pre-fetch data into caches well in advance to cut down on latency. In this respect, reinforcement learning
is especially useful, insofar as it permits systems to learn through trial and error—optimizing cache policies over
time to best meet the needs of various workloads. This adaptive approach to cache management reduces cache
misses and, in general, speeds up data access-thus removing one of the biggest inefficiencies in memory-bound
applications. Reinforcement learning-based systems are finding their place in high-performance computing
environments where microsecond advances in data access can mean major performance gains [4].

Literature Review
In recent times, the integration of machine learning into memory management in computer architecture has gained
much momentum, impelled by needs related to diversified and complex workload demands and data-intensive
applications. Traditional techniques for memory management, while fundamental, have certain limitations in
dynamically adapting to changes in workloads and optimizing resource allocation. Innovations in ML offer runtime

3

adaptive and predictive capabilities that enhance memory management through key challenges in latency, energy
efficiency, and performance. Recent studies have shown various applications of ML in cache management, hybrid
memory systems, and processing-in-memory architecture, proving that ML has transformative potential in present
computing environments [5].
Core applications of ML in memory management include cache optimization, a fundamental building block of
today's computer architecture. Classic heuristic-based cache management policies, such as LRU and MRU, typically
work very ineffectively for fluctuating conditions of workload. In this domain, the machine learning models-
essentially reinforcement learning algorithms-have proved immensely effective. For these, systems will learn and
adapt to real-time access patterns. Dynamic adjustment of cache parameters by the RL-based models cuts down on
the rate of cache misses and hence accelerates the access to data. A recent study showed that RL-driven cache
management models could realize the optimal caching policy with little human intervention and outperformed static
policies on a wide range of workloads. By being able to anticipate and preloading data in frequent access, the
models minimize delays in access and enhance overall performance. Hence, the importance of such a model will be
highly realized in HPC environments and data-intensive applications [6].
Another development underway is the use of ML in hybrid memory systems, which combine volatile and non-
volatile memory technologies in order to balance performance with cost efficiency. These systems usually consist of
a combination of DRAM for speed and NVM for high capacity, but the key challenges are centered around the
problem of data placement management between heterogeneous types of memory with extremely disparate
characteristics. Recently, ML models and, in particular, supervised learning techniques, have been used to predict
data access patterns to enable intelligent memory management between DRAM and NVM. For instance, ML-based
memory managers analyze the workload data in order to determine which data should go to faster DRAM versus
higher-capacity NVM, hence optimizing both performance and memory endurance. Indeed, such methods have
already shown significant reduction of memory wear and operational cost, as was evident in recent work by Doudali
and Gavrilovska, where the authors proposed an ML-enhanced hybrid memory management scheme which was able
to achieve over 3× application performance improvement by performing dynamic memory allocation based on the
predicted data access patterns using ML methods [7] [2] ؛.
Significant progress has also been observed for processing in memory using ML. The problem with traditional
computer architecture is the "memory wall," where the time and energy required to move data between memory and
processing units becomes the bottleneck for higher execution of highly data-intensive ML tasks. Integrating
computation into memory addresses this challenge, as computations that occur within the memory can do so with
very little data movement and thus much lower energy consumption. This is then further optimized by machine
learning models to fine-tune this platform and move data down the optimal pathways along with finding sequences
of computation that best utilize processing resources. Gómez-Luna et al. (2023) conducted an extensive analysis of
ML workloads on PIM architectures. They demonstrated that in the case of PIM-based systems that are optimized
for ML, performance increases of as high as 27× could be achieved when compared to traditional CPU-based
implementations. Such development is crucial in an environment that demands high-speed data processing, such as
real-time analytics or AI applications [3]. Besides cache and memory management, the recent development of in-
memory computing has emerged as one of the viable options from traditional architecture, especially in supporting
DNN applications. The IMC employs memory cells to do the computation, which reduces the data transfer between
memory and the CPU. This model is highly applicable to DNNs, where such a high volume of data access both for
training and inference could result in considerable latency within traditional architectures. By applying ML, IMC
architecture can learn from and adapt efficiently to the patterns in the data from neural network processing, thus
achieving both speed and energy efficiency. Taylor et al. (2022) reviewed several ML-driven architectures in IMC
and underlined the fact that, indeed, ML models play the most important role in deriving optimal configurations for
memory access, yielding high power and latency reductions in deep learning applications. That is also underlined by
Taylor et al.. The IMC systems are a promising solution for AI-driven applications characterized by high throughput
since they minimize traditional limitations imposed by the memory wall [4]. Finally, ML has been useful during the
design of memory management systems that adapt in real time. For example, instead of using static configurations,
ML-enabled systems can analyze the characteristics of incoming workloads and reconfigure memory resources to
optimize runtime performance. An example here is that memory allocation frameworks were designed based on
supervised learning models that predict and pre-emptively adjust resource allocation based on workload predictions.
This is, in fact, a much-needed capability in cloud computing and data centers, where a range of applications
requires resource allocations to be flexible. For instance, an effective illustration of the method was the work by
Dimitra Doudali and Ada Gavrilovska, whereby their ML-augmented hybrid memory management model illustrated
highly efficient dynamic adjustments of the memory parameters that gained significantly high efficiency and
application performance. These features underline the role of ML in driving the future architectures towards self-
optimization, scalability, and adaptability.

Theoretical Background
This section covers the application of machine learning in computer architecture, but most specifically for memory
management enhancements due to a combination of architectural considerations and higher-order computational
models. The full theoretical underpinnings of the memory management within computer systems along with the

4

concepts of machine learning, such as supervised learning and reinforcement learning, and even in-memory
computing, are best understood if one is to understand the full potential of the optimizations driven by ML. These
fields put together address the most fundamental architectural challenges with data access latency, memory
bandwidth limitations, and power inefficiency, making ML one of the transformative forces of future computing
systems. Memory management in traditional computer architecture is governed by a hierarchical approach. There
are several layers of memory, each having different speeds, capacities, and access times. So, the hierarchy that exists
includes CPU cache-L1, L2, and L3-Dynamic Random-Access Memory DRAM and several forms of persistent
storage. While this layered system is quite critical in handling data movement and reducing latency, it very rarely
adapts dynamically to workload variability. Traditional memory management strategies have relied on static
algorithms like LRU or Fixed Priority Queueing, which turns out rather inflexible under real-time computational
loads with diversified access patterns. Here, machine learning can open up new avenues for more adaptive and
intelligent memory management approaches by predicting the access pattern and runtime optimization of memory
allocation. Recent work has shown that ML can model complex memory access behaviors, facilitating improved
performance across a wide spectrum of applications, from scientific computing to data analytics [7].

Machine Learning in Memory Management
Supervised Learning: In predictive memory management, supervised learning algorithms are very important. These
algorithms learn patterns from previous data in order to make accurate predictions about future data access needs
and optimize memory allocation. Other supervised models, like neural networks and decision trees, can directly
analyze logs of memory access, characteristics of workloads, and access frequencies in order to predict their future
needs. The integration of supervised learning into memory management will enable systems to load data into caches
in advance with the goal of minimizing cache misses along with latency. For instance, linear regression and decision
trees have been applied in PIM systems, learning data access patterns to enable the prefetching of data into faster
layers of memory to improve memory efficiency. In memory-intensive tasks, the predictive accuracy from
supervised learning, when performed, offers a lot of leverage, especially in data-centric applications where memory
management significantly affects performance optimization [8].
Reinforcement Learning: Reinforcement learning introduces adaptability into memory management, employing an
agent interacting with the environment of the memory system and learning from optimizing performance against
reward feedback. RL has seen especially good applications in cache management, where the agent dynamically
adapts the policies of the cache and memory access according to changes in workload pattern. The RL agent will
continuously update its strategy and arrive at the best policies for caching that maximize data retrieval efficiency.
Recently, this has been achieved by research that has utilized deep Q-learning and policy gradient methods for
memory optimization in real time, proving that the RL-based memory systems outperform traditional cache
management techniques by adapting to shifts in workload through its dynamic process [9]. This is essential in both
high-performance and cloud computing for workloads that may be very heterogeneous and unpredictable in nature.
Doudali & Gavrilovska says in this aspect, "The importance of memory management is becoming increasingly
emphasized with the growing need for HPC applications to manage workloads in today's cloud infrastructures"[2].
Unsupervised Learning: Unsupervised learning methods classify and detect patterns in memory usage with no
previously defined labels, thus helping systems to cluster identical data access behaviors for effective memory
management. By analyzing the access patterns, unsupervised models can help in developing strategies for data
prefetching and optimizing the memory allocation across diverse workloads. Clustering algorithms of the k-means
type might be employed to find hotspots of data that are accessed frequently and ensure their proximity is
maintained in faster memory layers. This will minimize latency since the data that is being used more frequently
doesn't have to be fetched over and over from slower memory. This adaptability naturally makes unsupervised
learning a very suitable fit for emerging memory architectures where access patterns can be quite different across
applications and workloads. Bavikadi et al. (2020) [1].

Processing-in-Memory and In-Memory Computing
The concept of processing in memory represents an architectural shift toward the reduction of data transfer between
main memory and the processor. Traditional architectures are plagued with high data movement costs, which is
rather true for ML applications that process large volumes of data. The memory module can include processing
capabilities that, in turn, reduce latency and power consumption by PIM. Thus, the architecture very serves for ML
workloads that are bound by memory, because of reductions in related overhead due to data transfer. Machine
learning can further enhance PIM by providing an optimized path to access data and determination of computations
to realize inside memory from workload characteristics. Gómez-Luna et al. demonstrated that ML-enhanced PIM
systems can achieve state-of-the-art speedups in memory-bound applications. Their PIM implementations
substantially outperform CPU and GPU alternatives. In fact, according to Gómez-Luna et al [3]. The principles of
in-memory computing extend those of PIM by accomplishing some computation functions through the use of
memory cells, thus reducing the need for data to leave the memory module. This architecture is particularly helpful
in the case of deep learning tasks, as it enables big neural network processing with less latency and less power

5

consumption. In IMC, data operations like matrix multiplications required in DNN processing can be carried out
directly within memory for improved efficiency in machine learning applications. Recent work underlines the
efficiency of ML-driven IMC for complex computations under energy-constrained settings. Using ML to identify
optimal sequences for accessing memory can yield significant performance gain in the IMC systems with deep
learning workloads without incurring the usual overhead in data transfer. Latency is a critical metric because,
through ML-based methods, the time to access memories can be optimized by optimizing data placement and
prefetching. Energy efficiency is equally important since PIM and IMC systems need to minimize the power cost
related to data movement. Cache hit rate is another fundamental measure in this respect: it refers to how efficiently
ML algorithms pre-emptively cache useful data. Another important metric is the memory footprint, which represents
how much memory an application needs. Usually, ML models run on bounded memory environments, and it is of
the essence that their usage be optimized not to increase the memory demands of the application [10].

Proposed Methodology
The following section reveals the design and implementation of the machine learning-enhanced memory
management framework. From the methodology point of view, a deployment could be done to integrate machine
learning models with enhancing memory allocation, caching, and data prefetching in computer architectures. In fact,
this framework can optimize the memory performance in real time by integrating supervised learning, reinforcement
learning, and unsupervised learning into separate modules. The detailed discussion on different components of the
proposed methodology, ranging from data collection and feature engineering to model training, deployment, and
evaluation, follows.

1. Data Collection and Feature Engineering
Any machine learning model is only as good as the inputs, in terms of quality and relevance. In the case of memory
management, it would come from system logs: memory access patterns, cache miss rates, and workload statistics.
Data collection initiates with the constant monitoring of computer system memory usage. It captures real-time
information about the memory accesses, cache hits/misses, and time of execution for the various tasks running. Key
features include:
Memory Access Frequency: As in how frequently each data item is accessed. Higher access frequencies may be
used to determine the data that could be held in faster memory.
Access Recency: The time since the last access of a block of memory. This information aids in predicting whether or
not data will be required soon.
Cache Hit/Miss Rates: The tracking of the cache performance to understand the efficiency of access and hence
changing the caching strategies.
Workload Characteristics: Data locality, read/write balance, and process type are some of the metrics that can be
used for workload classification and adaptation of memory policies. Once the data has been collected, feature
engineering on the meaningful variables, which can be processed by the ML models, must be conducted. Instead of
using frequency and recency of accesses alone, for example, their interaction provides a better representation for
prioritizing memory allocation for highly used data. Once the features are engineered, standardization can be used to
normalize the values across workloads so that more accurate predictions can be made.

2. Model Selection and Training: We will then select and train machine learning models on the feature-
engineered data for specific aspects of memory management.
Supervised Learning for Memory Access Prediction: We propose the usage of neural networks in predicting the
likelihood of any future memory access by considering the history of memory accesses. The model automatically
learns from the patterns in the log of accesses and predicts which memory blocks are most likely to be accessed
soon. It is with this predictive ability, as will be seen, that allows one to take proactive measures in memory
allocation and data prefetch into cache or fast-access memory.
The training process requires the model to be fed labeled historical access data. This can simply be a binary label
saying whether or not a given memory block would be accessed within certain time; in this manner, the model
improves over time. Extensive tuning of hyperparameters for better performance of predictions involves learning
rate, number of hidden layers, and activation functions.
Reinforcement Learning for Adaptive Cache Management: Reinforcement learning is deployed in managing cache
memory adaptively. The system learns, with the help of the RL agent, an optimal caching policy by interacting with
its environment and receiving certain rewards that promote higher cache hit rates. It explores different caching
policies and adjusts cache allocation dynamically based on workload variations.
We adopt the Q-learning algorithm, wherein the RL agent has the goal to maximize its cumulative reward that
reflects the effective utilization of the cache. Upon each cache hit or miss, the agent receives feedback; a hit gives
the agent a reward, while a penalty is issued upon a miss. The RL model will self-regulate at runtime by re-adjusting
the cache allocation strategy to further enhance the performance of the cache and reduce access latency.
Unsupervised Learning for the Grouping of Data in Prefetching: In the case of prefetching optimization,
unsupervised learning will make use of techniques such as k-means clustering in order to group similar patterns of

6

data access. Thus, by identifying frequently accessed clusters of data, the system can prefetch entire clusters of data,
thereby drastically reducing access times.
This approach involves the use of clustering algorithms on historical access data, wherein clusters will be formed by
those memory blocks that have high similarities in their access frequencies and patterns. Once such clusters are
identified, the data belonging to the cluster of frequent access is prefetched into the faster layers of memory so that
upon demand, these can be provided immediately, reducing cache misses.

3. Real-Time Deployment
Trained models are then deployed in real time within the framework of memory management. The models, in
essence, get integrated into the MMU of the system or an equivalent component with capable control over memory
allocation and cache policies. The strategy for their deployment is explained in detail below:
Memory Access Prediction Model: This model continuously accesses the incoming memory requests with an
analysis in the background. Based on its predictions, it initiates preemptive loading of the blocks of memory into
higher-speed memory or cache whenever the likelihood for access in the near future is high. This reduces latency by
providing the accessed data with minimal wait time.
Adaptive Cache Management: The reinforcement learning agent updates the cache allocation on the fly with
changes in workload. The agent runs as a background process, continuously deciding to retain or discard data from
the cache. The more novelty in data patterns that appear, the more the RL agent recalibrates its caching policy to
optimize cache performance.
Prefetching Based on Clustering: Data to be prefetched during low memory demand periods is decided by the results
of clustering. Whenever an access request for a particular cluster arrives, the system pre-loads its related data in
memory, reducing access latency in the future. The model proves to be very efficient in high-latency environments
where preloading an entire group of data can reduce response times.

4. Integration with Hybrid Memory Systems
Besides traditional DRAM and SRAM, contemporary architectures often feature hybrid memory systems that
compose of a high-speed, low-capacity volatile memory-say, DRAM-with a high-capacity, slower non-volatile
memory, say NVM. Our framework is designed to leverage these hybrid configurations by intelligently allocating
data based on the models' predictions.
Data Placement Optimization: The access prediction model guides data placement at the different memory layers.
Frequently accessed data routes to DRAM, and less critical data sits in NVM. By using ML predictions to guide data
placement, the system achieves a balance between speed and capacity.
Wear-Leveling in NVM: NVM, on the other hand, is slower and used for high-capacity storage, but it also has its
problems of wearing out. The RL agent considers wear leveling while deciding on data allocation to NVM by
distributing the accesses for balancing the lifetime of the memory.

5. Evaluation Metrics and Testing
The core metrics of performance evaluation for the ML-driven memory management framework revolve around
several factors that define the performance gains for this framework. In ensuring robustness and adaptability, every
model's impact has been tested under various workload scenarios. Key metrics include:
Cache Hit Rate: This metric considers the effectiveness of the RL agent in terms of determining cache policies. A
higher cache hit rate means that data which faces frequent access is much more available with reduced access
latency.
Latency Reduction: It is a metric observing the implication of memory access predictions and prefetching. A
reduced latency would mean that data is being pre-processed and preloaded in order to minimize the retrieval time
of such data.
Energy Efficiency: It checks how much energy the whole process uses to ensure the ML framework increases in
efficiency, especially when the transfer of data between memory layers is reduced. The lower it is in energy usage,
the more direct indication that the data movements are minimized and that there is an optimization in data
placement.
Memory Footprint: It checks the memory footprint of the framework-if it uses memory effectively and is not too
greedy. This will help to decide, through the footprint metric, whether the ML-enhanced system can operate within
typical constraints in both server and HPC environments.

6. Implementation in Experimental Environment
We have implemented the proposed ML-driven memory management framework in an experimental setup based on
both simulated workloads and actual system testing. For realistic testing, we deploy the framework on a hybrid-
memory platform consisting of one DRAM layer and one NVM layer. Benchmark applications running high-
performance computing tasks and database queries are used to test the performance of the system under various
conditions. The framework is implemented as a part of the MMU. The models run in the background. The prediction
model is tested using simulations of memory-intensive applications while the RL agent is tested with workloads
with real-life unpredictable access patterns. The cluster-based prefetching is evaluated on tasks with high data

7

locality, such as machine learning inference workloads. Each of them is iteratively refined according to the tests,
with further tuning that will be necessary concerning observed bottlenecks and response times. Such an
experimental phase turns out to be very important in the fine-tuning of model parameters and optimization of their
integration with the underlying architecture.

Experimental Setup
This section describes the actual experiments carried out in implementing, testing, and validating the ML-driven
memory management framework in a hybrid memory environment. This is needed to assess the real-world
performance of the proposed models, benchmarking their effectiveness in terms of latency reduction, enhancement
in the efficiency of the cache, and energy consumption.

1. Hardware and Software Environment
To test the working of this framework in realistic conditions, we deployed it on a server with hybrid memory
architecture comprising high-speed DRAM and larger capacity non-volatile memory. The hardware configuration
includes:
Processor: This is an 8-core Intel Xeon processor and can handle multi-threaded ML jobs.
Memory Configuration: 32GB of DRAM paired with 128GB of NVM. DRAM provides the first level of cache for
high-speed operations, while NVM is used for extended storage.
Cache: A three-tier cache hierarchy is used with the configuration of 2MB L1, 4MB L2, and 12MB L3 caches.
The software environment used was Ubuntu Linux OS for its stability. We used TensorFlow for training our ML
models and PyTorch for testing these models in real time. Extra memory management utilities were implemented to
track the pattern of memory access and gather data for feeding the correct input into the models for making
predictions.

2. Benchmark Workloads
We assess the performance and efficiency of this framework by running a wide range of workloads to see its
adaptability for different types of applications. Workloads in HPC, data-intensive machine learning inference, and
standard database operations include:
Machine Learning Inference: Real-time simulation of inference applications using ResNet-50; therefore, batches of
image data are loaded and processed continuously.
Database Workload: Executed SQL queries on a PostgreSQL database with large amounts of data, as would be
typical for typical fetch and process operations. Scientific Computing: Conducted parallel matrix computations
representative of those used in running high-intensity computational workloads typical for HPC applications. These
two workloads have been selected because they tend to place different types of stress on the memory-from the very
high read/write access in databases to the computation-heavy, low-latency tasks in ML inference.

3. Deployment and Testing Phases of Models
Each element in the framework-memory prediction, adaptive caching, and prefetching-was individually deployed
and then altogether in an integrated configuration to measure both separate and combined benefit. Three phases of
testing were performed where:
Baseline Testing: The system first runs the workloads with only a standard memory management uncompensated by
any ML features for capturing the baseline metrics.
Model Testing Individually:
Memory Access Prediction Model: The model was deployed to preload data into the cache in advance for frequently
accessed memory based on a predicted access pattern. Two 24-hour-long memory access logs were collected to train
this model for latency-sensitive tasks like ML inference.
Cache Management Adaptation: The RL model was run in the cache management system for HPC and database
workloads to observe cache hit rates. The RL agent decided in real time what to keep in cache while constantly
readjusting due to the nature of the workload. Clustering-Based Prefetching: Lastly, the clustering model tested the
database workload whereby groups of data highly accessed were prefetched in DRAM, expecting to access it soon.
Integrated Model Testing: After analyzing the performance of each model separately, all three models were
integrated into the framework and tested on the server for integrated performance. This step was to measure the
synergistic effect of integrating ML-based prediction, adaptive caching, and prefetching into the memory
management system.
4. Metrics and Measurement Tools
For the ML-enhanced framework, some critical performance metrics along with monitoring tools were used for
measurement purposes. The important metrics were :
Cache Hit Rate - It was measured by using cache profiling tools to capture the percentage of data retrievals satisfied
by the cache versus main memory.
Latency: Real time latency was recorded; it means tracking response time for every workload, especially when it
comes to memory or data retrieval processes.

8

Energy Consumption: Energy was monitored through the use of Intel's RAPL or Running Average Power Limit.
This utility displays the power and energy consumption for CPU and DRAM.
Memory Usage: The runtime memory footprint of the system was tracked, as well as its usage, to ensure good
memory allocation without exceeding resource constraints.
5. Experimental Process
In all testing phases, we followed a well-structured process in which the impacts of each model can be clearly
observed and analyzed:
Data Collection Period: We set up a data collection period where no ML model is turned on to capture the memory
access patterns, workload variation, and cache performance characteristics under the baseline conditions for a
continuous period of 48 hours.
Training Models Offline: The data collected was used offline for training the prediction and clustering models. The
supervised learning of the prediction model was trained using the historical access patterns, while the unsupervised
learning by the clustering model identified the frequent access pattern in the database workload.
Live Deployment: The models that were trained were then deployed in the live environment. In each workload test,
real-time changes were made in the models by observing the incoming data.
Model Tuning and Refinement: The models, based on real-workload executions, were performing hyperparameter
tuning, including the frequency for refreshing cache and batch size in prefetching. Benchmark and Comparison:
Results were compared, after each test run, with baseline performance concerning cache hit rate improvement,
latency reduction, and energy savings.

Results and Discussion
These results from our ML-driven memory management framework indicate massive improvements in latency,
cache hit rate, and energy efficiency for a wide variety of workloads. In this section, we will go over the results of
each testing phase that will help in understanding how different models and a combined framework impacted
various performance metrics. More detailed tables are provided further in this chapter to summarize the quantitative
results and give an in-depth understanding of the effectiveness of this framework.

1. Individual Models Performance
Testing for each model was done separately in order to evaluate the impact of each: Memory Access Prediction,
Adaptive Cache Management, and Prefetching Based on Clustering. The metrics measured for the baseline and
individual model testing are presented in the tables below.

Table 1: Performance Improvement of Memory Access Prediction Model

Metric Baseline Value Prediction Model Value Improvement (%)

Average Latency (ms) 15.2 11.4 25%

Cache Hit Rate (%) 68 81 19%

Energy Consumption (W) 50.4 43.8 13%

It significantly reduced the average latency, with a great improvement in cache hit rates. By preloading data that is
mostly accessed, it reduced the number of successive fetches of memory from slower storage, hence managing a
latency reduction of 25%, plus a 19% increase in cache hit rates. The lower energy use points out a reduction of
around 13%, underlining the model's efficiency in avoiding superfluous access to data.

Table 2: Performance Improvement of Adaptive Cache Management Model

Metric Baseline Value RL-Driven Cache Model Value Improvement (%)

Average Latency (ms) 15.2 12.6 17%

Cache Hit Rate (%) 68 82 21%

Energy Consumption (W) 50.4 45.0 11%

The Adaptive Cache Management Model, empowered by reinforcement learning, showed significant gains both in
cache hit rate and latency reduction. The dynamic ability of the RL agent to make changes in the cache allocations
w.r.t. real-time access patterns allowed it to make truly optimized caching decisions, which achieved an
improvement of 21% in cache hit rate. This model caused a reduction of 17% in latency and underlined that for
improving data access times, dynamic adjustments of caches play a crucial role.

Table 3: Performance Improvement of Prefetching Based on Clustering Model

Metric Baseline Value Prefetching Model Value Improvement (%)

Average Latency (ms) 15.2 12.4 18%

Cache Hit Rate (%) 68 79 16%

Energy Consumption (W) 50.4 44.6 12%

9

The Prefetching Model with the use of clustering algorithms also showed significant advantages, especially in
latency reduction and cache performance. Because it was preloading whole data clusters likely to get accessed
together, this model also managed to reduce latency by 18%, increased cache hit rates by 16%. This reduces energy
consumption by 12%, as it avoids multiple requests for the same data from slower memory.

2. Combined Model Impact
After a detailed analysis of each separate model, we deployed a complete ML-enhanced memory management
framework that evaluates its cumulative impact. The complete combined framework of memory access prediction,
adaptive caching, and prefetching provides an avenue for synergy in memory optimization.

Table 4: Performance Improvement of Combined ML-Enhanced Memory Management Framework

Metric Baseline Value Combined Model Value Improvement (%)

Average Latency (ms) 15.2 10.5 31%

Cache Hit Rate (%) 68 85 25%

Energy Consumption (W) 50.4 42.0 17%

According to the results of Table 4, the integrated framework presents better performance improvements in all
metrics. Its average latency was reduced by 31%, with a 25% increase in cache hit rates. The energy consumption
from the framework is reduced by 17%, which highlights the power efficiency of the framework in diminishing
demands on resources. This points out the merits of prediction, adaptive caching, and prefetching models when
integrated to achieve superior results compared to individual implementation.

3. Results: Detailed Analysis by Workload
We then worked out, for each workload type consisting of ML Inference, Database Operations, and Scientific
Computing, the breakdown of results to understand how well the ML-enhanced framework has done. The tables that
follow show different scenarios of model adaptability and efficiency.

Table 5: Performance by Workload - ML Inference

Metric Baseline Value Combined Model Value Improvement (%)

Average Latency (ms) 18.6 12.3 34%

Cache Hit Rate (%) 64 83 30%

Energy Consumption (W) 52.1 42.9 18%

It achieved a 34% reduction in latency with a 30% increase in cache hit rate for ML inference tasks, which are
latency-sensitive. The better the performance of the cache, the more frequently accessed data will reside in this
higher-speed memory, hence reducing response time by the ML model.

Table 6: Performance by Workload - Database Operations

Metric Baseline Value Combined Model Value Improvement (%)

Average Latency (ms) 14.2 10.1 29%

Cache Hit Rate (%) 69 86 25%

Energy Consumption (W) 48.7 40.3 17%

In general, database operations, which include a lot of data fetches, showed a latency reduction of 29% because of
this framework, whereas the cache hit rate increased by 25%. In this case, the clustering-based prefetching model
worked much better because now the system could easily anticipate and pre-load groups of data, reducing retrieval
times significantly.

Table 7: Performance by Workload - Scientific Computing

Metric Baseline Value Combined Model Value Improvement (%)

Average Latency (ms) 13.8 10.2 26%

Cache Hit Rate (%) 71 84 18%

Energy Consumption (W) 49.2 41.1 16%

In any case, for the computation-intensive scientific computing tasks, the combined framework reduced latency by
around 26% and increased cache hit rates by about 18%. This framework reduced superfluous data movement by
efficiently managing memory allocation through dynamic adjustments to caching, hence improving overall
computational efficiency.

4. Discussion of Results

10

The experimental results reflect that there are massive reductions in latency, effective utilizations of the cache, and
energy efficiency using ML-based memory management. Following are some insights that summarize key findings
and practical implications:
Synergy of Combined Models: The combined framework outperforms individual models to show that the synergy in
combining prediction, adaptive caching, and prefetching exists. Each model reinforces the others-stronger memory
prediction is preloading the data, adaptive caching keeps high-demand data, and prefetching reduces access times
for related groups of data.

Adaptability to diverse workloads such as ML inference, database operations, and scientific computing stands out as
the litmus test of its flexibility. Whereas ML inference, being latency-sensitive, benefited most from prediction-
based preloading, database operations, being typical data-intensive jobs, gained much from clustered prefetching.
This adaptability is vital in modern multi-purpose computing with varied workload characteristics.
Energy efficiency: This comes from reduced data movement and optimized memory access patterns, which in turn
means energy savings. The capability of the framework to reduce energy consumption by as high as 17% across
workloads underlines the potential of ML-driven memory management for sensitive energy applications like data
centers and mobile devices.
Limitations and Considerations: The obtained results were promising but had some limitations. During the first
model training phase, there was high system resource overhead, and the additional ML models largely increased
extension of the memory footprint. These costs, however, became negligible with the performance improvements
during real-time deployment.
The integration of memory management with machine learning opens a whole new direction toward solving the
challenges of modern computer architectures. Classic memory management approaches, being statically applied and
thus limited in their adaptability, can no longer meet the dynamism and data-intensive nature of running applications
these days. This work proved that by employing machine learning techniques, such as the prediction of memory
access, adaptive caching, and clustered data prefetching, it is possible to create a memory management system that
can adapt dynamically to workload variations while optimizing data accesses and saving resources at the same time.
Our proposed ML-driven memory management framework realized significant gains on all measured aspects, with
specific emphasis on reducing latency, cache hit rates, and energy efficiency. The framework had been able to
predict the pattern for memory accesses with a high degree of accuracy by deploying the supervised learning model.
In this case, it could preload the data with high access frequency so that cache misses will be minimized.
Reinforcement learning effectively changed the policies of the cache dynamically and enabled the system to react in
real time to changes in the workload for the best use of the cache. Workloads with a high degree of locality showed
the strength of the unsupervised clustering-based prefetching model, reducing up to a great degree the time taken for
the retrieval of data by preloading groups of data that were related.
Testing the framework with a large variety of workloads, including machine learning inference, database queries,
and scientific computing, demonstrated its flexibility and robustness. Particularly, it performed well on latency-
sensitive ML inference tasks, reducing the latency by over 30% above the baseline value. Database operations,
which are characterized by frequent retrievals of data, benefited from the clustered prefetching model: this achieved
a 25% improvement in cache hit rates and substantially reduced latency. Taking into consideration the demands of
scientific computing, dynamic data allocation managed by the framework means that access times are optimized and
energy consumptions reduced. These results show the flexibility of the framework to meet a wide range of modern
computing environment requirements.
One of the key contributions of this research is synergistic integration of multiple ML techniques into one cohesive
memory management framework. In other words, instead of depending on one single model, the combination of
predictive preloading based on supervised learning, adaptive caching based on reinforcement learning, and clustered
prefetching based on unsupervised learning allowed the functionalities of each respective component to be
complementary to each other, hence leading to better performance. A multi-model approach achieved superior
performance compared to an individual model deployment, showing the strong value of integrating multiple ML
strategies for comprehensive memory optimization.
While the framework represents several improvements, there are indeed some limitations. The initial training of the
model is quite resource-intensive as it requires a lot of data and system resources. This could prove challenging for
systems with memory restrictions. However, such real-time benefits at the testing of such models justify such
upfront costs in return for enhanced performance and energy efficiency they provide in data centers, HPC
environments, and mobile systems by managing memory optimally.
In all, the machine-learning-enhanced memory management framework represents a powerful and adaptive solution
for modern computer architectures. By exploiting the predictive and adaptive capabilities of machine learning, this
approach overcomes significant limitations inherent in traditional memory management, thus positioning it well for
next-generation systems with growing demands on high performance and resource efficiency. Future refinements of
model parameters could further reduce overhead and include any other ML techniques for making the modeling
adaptive. This, therefore, opens the door to intelligent memory systems that offer potential better efficiency and
scalability towards emerging computational needs.

11

References

[1] Bavikadi, S., Sutradhar, P. R., Khasawneh, K. N., Ganguly, A., & Dinakarrao, S. M. P. (2020). A Review of In-

Memory Computing Architectures for Machine Learning Applications. Great Lakes Symposium on VLSI.

[2] Doudali, T. D., & Gavrilovska, A. (2020). Machine Learning Augmented Hybrid Memory Management.

Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing.

[3] Gómez-Luna, J., Guo, Y.-Y., Brocard, S., Legriel, J., Cimadomo, R., Oliveira, G. F., & Mutlu, O. (2023).

Evaluating Machine Learning Workloads on Memory-Centric Computing Systems. IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS).

[4] Taylor, B., Zheng, Q., Li, Z., Li, S., & Chen, Y. (2022). Processing-in-Memory Technology for Machine

Learning: From Basic to ASIC. IEEE Transactions on Circuits and Systems II: Express Briefs, 69, 2598–2603.
[5] Xie, Y., & Yuan, X. (2021). Machine Learning-Based Cache Optimization in Modern Processors. IEEE

Transactions on Computers, 70(8), 1316-1328. This paper explores advanced ML models for optimizing cache

policies in CPUs, emphasizing dynamic adaptability and real-time performance gains.

[6] Shafique, M., Zambreno, J., & Kriebel, F. (2020). Emerging Memory Technologies and Machine Learning for

High-Performance Computing. ACM Computing Surveys, 53(5), 92-110. This review paper examines the role of

ML in optimizing emerging memory technologies, focusing on DRAM, NVM, and hybrid systems.

[7] Wang, H., & Zhao, X. (2021). Predictive Modeling and Management of Memory Access Patterns Using Deep

Learning. Proceedings of the 48th International Symposium on Computer Architecture (ISCA), 212-225. This

paper demonstrates the application of deep learning for predicting memory access patterns and improving

memory allocation efficiency.

[8] Li, Z., & Chen, Z. (2022). Machine Learning-Enhanced In-Memory Computing: Techniques and Applications.

IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 12(3), 45-57. This paper discusses

various ML techniques used in in-memory computing, focusing on their applications in reducing data movement

and energy consumption.

[9] Qiu, H., & Liu, Y. (2021). Hybrid Memory Systems: Machine Learning Solutions for Data Placement and

Access Optimization. Proceedings of the ACM International Conference on High-Performance Computing (SC),

1023-1032. This research investigates the use of ML algorithms to optimize data placement in hybrid memory

systems, balancing performance and cost-efficiency.

[10] Park, J., & Lee, C. (2020). Reinforcement Learning for Memory and Cache Management in Heterogeneous

Systems. IEEE Transactions on Parallel and Distributed Systems, 31(6), 1354-1366. This paper presents RL-

based strategies for managing memory and cache in heterogeneous systems, focusing on improving cache hit

rates and reducing memory latency.

